

Prepared for Weta Digital, March 2012
Martin Lucina <martin@lucina.net>

What is ZeroMQ?

● … a replacement for AMQP?
● … a Message Queue?
● … BSD sockets with framing?

Not quite all of the above...
● Lego bricks for building your own

distributed systems.
● BSD sockets the way they might look if

designed today.

Existing solutions

● Custom-built:
● Roll your own messaging over BSD sockets.

● Proprietary/enterprise message-oriented-middleware:
● Message queueing in a box.
● Most current implementations are like SQL databases in

the 1980s, or cater to niche markets (FT).
● Usually big, slow, complex and always expensive.

● FOSS middleware:
● AMQP: RabbitMQ, Redhat MRG, OpenAMQ.
● Niche or domain-specific: OpenMPI, D-Bus.

ZeroMQ

● Is 100% Free Software, LGPL.
● Around 20k LOC of extremely conservative C++.
● Provides a lean and mean native C API inspired by BSD

sockets.
● Cross platform

● Linux, *BSD, Solaris and any other POSIX platform.
● Win32/Win64
● VMS

● Language agnostic
● C++, Python, Ruby, Java, .NET CLR, Perl, Erlang, LISP,

Haskell and more

ZeroMQ Sockets vs. BSD (TCP)
sockets

● Messages vs. bytes.
● Transfer is atomic, either you get the whole

message, or you get nothing.
● No reliability guarantees (at-most-once delivery).
● Sending is entirely asynchronous.
● No direct access to the individual underyling

connections.
● A single socket can be connected and/or bound

to multiple endpoints, potentially using multiple
transports.

The API

● zmq_socket()
● zmq_connect(), zmq_bind()
● zmq_send(), zmq_recv()
● zmq_setsockopt(), zmq_getsockopt()
● zmq_poll() for integration with event loops.
● That's it!
● Well, not quite. A bunch of functions for

housekeeping: zmq_init(), zmq_term() and zero-
copy send/receive, manipulation of messages:
zmq_sendmsg(), zmq_recvmsg(), zmq_msg_*().

Sockets and patterns

● Request/reply
● ZMQ_REQ, ZMQ_REP
● An SQL client/server model.

● Publish/subscribe
● ZMQ_PUB, ZMQ_SUB
● A data distribution model. E.g. stock market quotes,

media streaming, …
● Pipeline

● ZMQ_PUSH, ZMQ_PULL
● Work distribution. Eg, HPC worker nodes.

Transports

● tcp://...
● plain old TCP

● ipc://...
● Local inter-process communication

● inproc://...
● Local in-process communication

● epgm://..., pgm://...
● PGM “mostly-reliable” multicast

Request/reply topology

Client

REQ

Client

REQ

Client

REQ

REP

Service

(Live demo examples shown here)

Publish/subscribe topology

Publisher

PUB

SUB

Subscriber

SUB

Subscriber

SUB

Subscriber

(Live demo examples shown here)

The multithreaded problem
● Many cores, many threads.

● Classic MT code uses locks.

● Rearchitecting using message-passing is a really nice model for a
lot of applications.

● Entire languages (Erlang) built around message passing
integrated into the language.

● ZeroMQ lets you use this kind of model with any language we
have a binding for.

● Example: Each thread owns an inproc:// socket “mailbox”.

● ZeroMQ actively encourages you to use this model:
● Sockets may be migrated between threads, if you're not scared of full

memory barriers.
● Otherwise, always use a socket from a single thread.

The reliability problem

● A lot of people ask “Does ZeroMQ do
reliable/persistent/fault-tolerant messaging?”

● What is “reliable”, exactly?
● At-most-once delivery (yup, out of the box).
● At-least-once delivery (easy to implement, sufficient for most

applications, potential project for someone to fix in-core
REQ/REP).

● Once and only once delivery (hard, don't believe the vendors,
impossible without operator intervention).

● “Reliable publish/subscribe” is a lie; a single hung consumer can
kill the entire topology.

● Cost/benefit: Applications crashing? Servers crashing?
HDD mangling your bytess on their way to a journal?

The scalability problem

● Scale out, infinitely.
● The Web has taught us to make services stateless and/or able

to tolerate duplicate requests: at-least-once delivery.
● ZeroMQ actively encourages you to architect your distributed

systems to be infinitely scalable.
● No direct application access to underlying connections or information

about individual instances.
● All basic ZeroMQ patterns (socket types) are designed to be scalable.

● A long-term design goal is scaling out to global topologies:
● End-to-end (REQ/REP, PUB/SUB)
● vs. hop-by-hop (XREQ/XREP, XPUB/XSUB)
● Global data distribution, devices as transparent middle nodes in the

topology, etc.

Request/reply with Queue
Device topology

Client

REQ

Client

REQ

Client

REQ

XREP
Queue device

XREQ

REP
Service

(Instance 1)

REP
Service

(Instance 2)

REP
Service

(Instance 3)

Queue device

● Implement a classic shared queue. Services can come and
go, the clients do not need to know about individual
instances.

● This is the “Enterprise Service Bus”.
● All the queue device does is:

● Poll for input on its “in” and “out” sockets.
● Receive requests from the “in” socket and forward them to the

“out” socket.
● Receive replies from the “out” socket and forward them to the “in”

socket.

● Device is a transparent middle node. Node code changes at
client or service are needed to use it, only your endpoints
change.

Future directions

● API stability and simplicity. Implies keeping many potential
features out of the core library.

● Pluggable transports, filtering mechanisms.
● Use over the Internet. The library must not crash, ever.
● Naming and discovery of distributed services.
● Authentication, encryption. Hard problems to get right.
● Management and monitoring infrastructure.
● Moving towards making ZeroMQ an integral part of the

Internet stack
● A nascent working group for eventual IETF standardisation of the

concepts behind ZeroMQ, and a kernel-space implementation.

Questions?

● www.zeromq.org
● Extensive API reference and user guide
● Active mailing list with 1000+ members
● IRC chat at #zeromq on Freenode

Martin Lucina, <martin@lucina.net>

http://www.zeromq.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

