OMQ

Prepared for Weta Digital, March 2012
Martin Lucina <martin@Ilucina.net>




What is ZeroMQ?

* ... a replacement for AMQP?

* ... a Message Queue?

* ... BSD sockets with framing?
Not quite all of the above...

* Lego bricks for building your own
distributed systems.

* BSD sockets the way they might look if
designed today.



Existing solutions

« Custom-built:
« Roll your own messaging over BSD sockets.
« Proprietary/enterprise message-oriented-middleware:

« Message queueing in a box.

« Most current implementations are like SQL databases in
the 1980s, or cater to niche markets (FT).

« Usually big, slow, complex and always expensive.

« FOSS middleware:

« AMQP: RabbitMQ, Redhat MRG, OpenAMQ.
* Niche or domain-specific: OpenMPI, D-Bus.



ZeroMQ

e Is 100% Free Software, LGPL.
« Around 20k LOC of extremely conservative C++.

* Provides a lean and mean native C API inspired by BSD
sockets.

e Cross platform

« Linux, *BSD, Solaris and any other POSIX platform.
e Win32/Win64
« VMS

 Language agnostic

« C++, Python, Ruby, Java, .NET CLR, Perl, Erlang, LISP,
Haskell and more



ZeroMQ Sockets vs. BSD (TCP)
sockets

 Messages vs. bytes.

* Transfer is atomic, either you get the whole
message, or you get nothing.

* No reliability guarantees (at-most-once delivery).
« Sending is entirely asynchronous.

* No direct access to the individual underyling
connections.

* A single socket can be connected and/or bound
to multiple endpoints, potentially using multiple
transports.



The API

zmq_socket()

zmq_connect(), zmqg_bind()

zmqg_send(), zmqg_recv()

zmq_setsockopt(), zmqg_getsockopt()

zmq__poll(
That's it!

) for integration with event loops.

Well, not quite. A bunch of functions for
housekeeping: zmqa_init(), zmqg_term() and zero-

copy send

/receive, manipulation of messages:

zmq_sendmsg(), zmqg_recvmsg(), zmqg_msg_*().



Sockets and patterns

* Request/reply

- ZMQ_REQ, ZMQ_REP

 An SQL client/server model.
* Publish/subscribe

. ZMQ_PUB, ZMQ_SUB

* A data distribution model. E.g. stock market quotes,
media streaming, ...

* Pipeline
« ZMQ_PUSH, ZMQ_PULL
 Work distribution. Eg, HPC worker nodes.



Transports

tcp://...
* plain old TCP

ipc://...

* Local inter-process communication

inproc://...

* Local in-process communication

epgm://..., pgm://...

* PGM "mostly-reliable” multicast



Request/reply topology

Client Client Client
REQ REQ REQ
REP
Service

(Live demo examples shown here)



Publish/subscribe topology

Publisher
PUB
SUB SUB SUB
Subscriber Subscriber Subscriber

(Live demo examples shown here)



The multithreaded problem

Many cores, many threads.
Classic MT code uses locks.

Rearchitecting using message-passing is a really nice model for a
lot of applications.

Entire languages (Erlang) built around message passing
integrated into the language.

ZeroMQ lets you use this kind of model with any language we
have a binding for.

Example: Each thread owns an inproc:// socket "mailbox”.

ZeroMQ actively encourages you to use this model:

« Sockets may be migrated between threads, if you're not scared of full
memory barriers.

« Otherwise, always use a socket from a single thread.



The reliability problem

« A lot of people ask "Does ZeroMQ do
reliable/persistent/fault-tolerant messaging?”

« What is “reliable”, exactly?

At-most-once delivery (yup, out of the box).

At-least-once delivery (easy to implement, sufficient for most
applications, potential project for someone to fix in-core
REQ/REP).

Once and only once delivery (hard, don't believe the vendors,
impossible without operator intervention).

“Reliable publish/subscribe” is a lie; a single hung consumer can
Kill the entire topology.

« Cost/benefit: Applications crashing? Servers crashing?
HDD mangling your bytess on their way to a journal?



The scalability problem

« Scale out, infinitely.

« The Web has taught us to make services stateless and/or able
to tolerate duplicate requests: at-least-once delivery.

« ZeroMQ actively encourages you to architect your distributed
systems to be infinitely scalable.

« No direct application access to underlying connections or information
about individual instances.

« All basic ZeroMQ patterns (socket types) are designed to be scalable.
« A long-term design goal is scaling out to global topologies:

- End-to-end (REQ/REP, PUB/SUB)

« vs. hop-by-hop (XREQ/XREP, XPUB/XSUB)

- Global data distribution, devices as transparent middle nodes in the
topology, etc.



Request/reply with Queue

Client

REQ

Device topology

Client

REQ

Client

REQ

\i/

XREP
Queue device
XREQ

REP
Service
(Instance 1)

T

REP
Service
(Instance 2)

REP
Service
(Instance 3)




Queue device

« Implement a classic shared queue. Services can come and
go, the clients do not need to know about individual
Instances.

e This is the “Enterprise Service Bus”.

 All the queue device does is:

« Poll for input on its “in” and “out” sockets.

« Receive requests from the “in” socket and forward them to the
“out” socket.

« Receive replies from the “out” socket and forward them to the “in’
socket.

« Device is a transparent middle node. Node code changes at
client or service are needed to use it, only your endpoints
change.



Future directions

« API stability and simplicity. Implies keeping many potential
features out of the core library.

Pluggable transports, filtering mechanisms.

Use over the Internet. The library must not crash, ever.

Naming and discovery of distributed services.

Authentication, encryption. Hard problems to get right.

Management and monitoring infrastructure.

Moving towards making ZeroMQ an integral part of the
Internet stack

« A nascent working group for eventual IETF standardisation of the
concepts behind ZeroMQ, and a kernel-space implementation.



Questions?

WWW.zZzeromg.org

Extensive API reference and user guide
Active mailing list with 1000+ members
IRC chat at #zeromqg on Freenode

Martin Lucina, <martin@Ilucina.net>


http://www.zeromq.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

