
Deploying real-world software today as
unikernels on Xen with Rumprun

Martin Lucina
@matolucina

mato@rumpkernel.org

1 / 24

https://twitter.com/matolucina
http://lucina.net/

Rumprun: Introduction
Rump kernels provide production quality kernel drivers such as file
systems, POSIX system call handlers and a TCP/IP network stack.

Development started circa 2007 as part of the NetBSD project.
Use the NetBSD anykernel architecture to provide unmodified drivers.

The Rumprun unikernel is a software stack for building and running
unmodified POSIX applications as unikernels.

Initial support for the Xen platform was committed almost exactly
two years before this talk as rumpuser-xen, and later morphed into
the Rumprun unikernel.
Today we support Xen, KVM and bare metal as platforms, on the x86,
x86_64 and ARM architectures.

More detailed history in @anttikantee's article, On rump kernels and the
Rumprun unikernel.

2 / 24

https://blog.xenproject.org/2015/08/06/on-rump-kernels-and-the-rumprun-unikernel/
http://rumpkernel.org/
http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/sys/rump/README.dirs?rev=1.1&content-type=text/plain
https://github.com/rumpkernel-attic/rumprun-xen/commit/d641661544f7b4c849db0ad0f80f537553673910
http://repo.rumpkernel.org/rumprun
https://twitter.com/anttikantee

Rumprun: Hello, World
The first non-trivial program which ran as a rump kernel-based unikernel on
Xen was netcat, so we'll use it again as our "Hello, World" example today:

$ x86_64-rumprun-netbsd-gcc -o netcat netcat.c
$ rumpbake xen_pv netcat.bin netcat

As root, we rumprun* our freshly-baked unikernel:

rumprun xen -di -I xen0,xenif -W xen0,inet,static,10.0.120.120/24 \
> -- ./netcat.bin -l -p 3333
(...)
xenif0: Ethernet address 00:16:3e:5f:d2:3c

=== calling "./netcat.bin" main() ===

rumprun: call to ̀ s̀igaction'' ignored
rumprun: call to ̀ _̀sys___sigprocmask14'' ignored

* rumprun command syntax is not final and subject to change. See august 2015 status report
for details.

3 / 24

https://www.freelists.org/post/rumpkernel-users/status-report-and-where-rump-kernels-are-headed-2015-edition
http://nc110.sourceforge.net/

Rumprun: Hello, World
Elsewhere, we connect to it and send our message:

$ echo "Hello, World" | nc -q0 10.0.120.120 3333

Our artisanal netcat unikernel processes the message and dutifully shuts
down:

Hello, World

=== _exit(0) called ===
rump kernel halting...
syncing disks... done
(...)
#

Finished with engines!

4 / 24

Rumprun: Hello, World
What just happened?

We took an existing, unmodified POSIX application, vintage 2011.
Cross-compiled it into a unikernel using the rumprun cross toolchain.
Baked the final unikernel image using rumpbake for a Xen PV platform.
Booted the unikernel as a Xen domU, processed a request and shut it
down.

Ok, but what's inside this thing?

-rwxr-xr-x 1 mato mato 36320 Aug 13 22:54 netcat
-rwxr-xr-x 1 mato mato 19234176 Aug 13 22:56 netcat.bin

$ size netcat.bin
 text data bss dec hex filename
2261696 358500 2135152 4755348 488f94 netcat.bin

Seems a bit big, let's take a closer look.

5 / 24

Rumprun: Architecture

6 / 24

Rumprun: Components
Rump kernel components:

POSIX system calls, TCP/IP stack, file systems, device drivers.
Full C and C++ standard library (direct from NetBSD upstream), including
pthreads.
Rumprun config & compat code:

Integration with the rumprun script and toolchain.
Bare metal kernel:

Co-operative thread scheduler.
For the Xen platform, this also contains the remains of Mini-OS,
mostly as early boot code and the Xen PV frontend drivers (netfront,
blkfront, pcifront).

It turns out this is enough* to run a lot of existing applications out of the box.

* Notable omissions: No fork() or exec(), no virtual memory.

7 / 24

Rumprun: Toolchain
Rumprun provides a standard compiler toolchain, indistinguishable from a
normal cross compiler, so that you can build existing software out of the box.

Support for common build systems is provided:

GNU autoconf: ./configure --host=x86_64-rumprun-netbsd
CMake: cmake -DCMAKE_TOOLCHAIN_FILE=.../x86_64-rumprun-netbsd-
toolchain.cmake

Plain make: make CC=x86-64-rumprun-netbsd-gcc

No shared libraries or dynamic linking, everything is linked together statically
into a single address space.

The rumpbake tool is used for the final link ("baking") of the unikernel, and can
be configured to leave out components which are not required by the
application or target platform.

8 / 24

Rumprun: Rumpbake
The definition of the xen_pv configuration is in app-tools/rumpbake.conf:

Paravirtualized Xen
addconfig xen_pv rumprun-xen \
 RND FS KERNFS DISK NETINET NETUNIX NETBPF NETCONFIG XEN XEN_NET SYSPROXY

The definition of the FS components:

LIBS_FS="rumpfs_ffs rumpfs_cd9660 rumpfs_ext2fs rumpfs_tmpfs"

For netcat, we can strip this configuration down:

addconfig xen_pv_minimal rumprun-xen KERNFS NETINET NETCONFIG XEN_NET

If we now re-bake netcat as rumpbake xen_pv_minimal netcat.min netcat, we
can see that the resulting unikernel is smaller:

 text data bss dec hex filename
2261696 358500 2135152 4755348 488f94 netcat.bin
1831377 305724 2023280 4160381 3f7b7d netcat.min

(4MB is still embarassingly large, reducing the size further is low-hanging fruit to fix.)

9 / 24

Rumprun: Packages
We provide a nascent packaging system at rumprun-packages, similar to BSD
pkgsrc. The goal is to encourage community participation and to provide pre-
packaged software builds for rumprun.

Packaged so far: hiawatha, leveldb, libxml2, mathopd, mpg123, mysql, nginx,
ngircd, pcre, php, python, redis, roundcube.

Most packages build with just make. Where patches are required, 99% of the
time these are related to the build system and cross compilation.

A lot of upstream software does not support cross compilation out of the box
(Nginx, I'm looking at you)!

Thankfully, quality patches for cross compiling existing software have been
developed, for example by the buildroot project. These can often be re-used
for rumprun.

10 / 24

http://repo.rumpkernel.org/rumprun-packages
http://buildroot.org/

Serving a static website with Nginx
With rumprun-packages/nginx:

1. Put your files in images/data/www.
2. Edit images/data/conf/nginx.conf to taste.
3. Run make and rumpbake xen_pv bin/nginx.bin bin/nginx.
4. Run the unikernel:

rumprun xen -M 128 -di \
-I xen0,xenif -W xen0,inet,static,10.0.120.120/24 \
-b images/stubetc.iso,/etc \
-b images/data.iso,/data \
-- bin/nginx.bin -c /data/conf/nginx.conf

The above invocation runs the nginx.bin unikernel with 128 MB of memory, a
single network interface using the Xen toolstack defaults, and two block
devices using ISO image files.

11 / 24

Rumprun: Network configuration
Creating a guest network interface:

-I tag,xenif[,backendopts]

Creates xenif0 inside the guest. Passes backendopts to the Xen toolstack, so can
contain any standard Xen network configuration options, such as bridge=,
mac=, script=.

Configuring the created network interface inside the guest:

-W tag,method,...

Static IPv4 address: -W tag,inet,static,addr/mask[,gateway]
IPv4 with DHCP: -W tag,inet,dhcp
IPv6 stateless autoconfiguration: -W tag,inet6,auto

tag has no functional significance, is used only to match up -I with
corresponding -W option(s).

12 / 24

Rumprun: Storage configuration
Creating a block device in the guest:

-b hostpath,[mountpoint]

Creates a block device in the guest, mapped to the host path hostpath.

hostpath may be either a regular file or a block device.
If mountpoint is specified and hostpath contains a supported file system
(FFS, CD9660, ext2), it will be mounted at /mountpoint in the guest.

Why file system image files?

Easy to work with, re-create as needed.
Using ISO images for read-only static data ensures the data cannot be
modified by the guest.

Could use LVM volumes, but that needs more infrastructure (snapshots?) for
the common "update data and reboot" life cycle.

13 / 24

Deployment: Startup and shutdown
rumprun xen -di can be fed to a pipe, and the process will terminate when the
domU shuts down. This works quite well with, for example, systemd:

[Unit]
Description=Rumprun (Nginx) (u-67)
Requires=xen.service
After=xen.service

[Service]
Environment="U_MAC=00:16:3e:04:04:04" "U_IP=62.176.XXX.XXX" "U_GW=62.176.XXX.XXX"
Environment="U_DATADIR=/srv/rumprun/nginx-u-67" "U_VIFNAME=vif.nginx-u-67"
Restart=always
ExecStart=/srv/rumprun/bin/rumprun xen -N %p -M 128 -di \
 -I xen0,xenif,mac=${U_MAC},ip=${U_IP},vifname=${U_VIFNAME},script=vif-route \
 -W xen0,inet,static,${U_IP}/24,${U_GW} \
 -I xen1,xenif,bridge=xenbr1 \
 -W xen1,inet,static,10.1.1.67/24 \
 -b /srv/rumprun/common/stubetc.iso,/etc \
 -b ${U_DATADIR}/data.iso,/data \
 -- \
 /srv/rumprun/bin/nginx.bin -c /data/conf/nginx.conf
ExecStop=/usr/sbin/xl destroy %p

[Install]
WantedBy=local.target

14 / 24

Deployment: Logging
Logging options:

Pipe the Xen console (rumprun -i) to logger or systemd.
Relies on small patches to xenconsole, coming in Xen 4.6.

Use a remote syslog server.
xenbr1 in the previous slide is used as a management network and
provides access to a syslog server.
Nginx has support for logging to a remote server via syslog:
access_log syslog:server=10.1.0.1,facility=local7 combined;

Rsyslog can log into separate files per hostname (-N option to rumprun):

ruleset(name="rumprun") {
 $template RumprunDynamic,"/var/log/rumprun-%hostname%.log"
 local7.* ?RumprunDynamic
}

$ModLoad imudp
$UDPServerRun 514
input(type="imudp" port="514" ruleset="rumprun")

15 / 24

Deployment: Monitoring and vital statistics
Currently there is no easy way to extract vital statistics (memory usage, for
example) from a Rumprun unikernel.

The easiest approach is to periodically print statistics to the console or syslog. I
have some proof of concept code for this, but it's not ready yet.

An alternative is to use the sysproxy mechanism provided by rump kernels,
which allows remote clients to execute system calls inside the unikernel. This
would allow us to use unmodified NetBSD tools such as df, netstat and vmstat
to inspect a running unikernel.

So, more work is needed in this area. In the mean time, make sure you run
your unikernels with enough resources (especially memory).

16 / 24

http://www.netbsd.org/docs/rump/sptut.html

The RAMP stack
MySQL, Nginx and PHP make up the RAMP stack, the Rumprun Answer to
MySQL and PHP:

An Nginx unikernel, serving HTTP(S) on the frontend and using FastCGI
on the backend.
A PHP unikernel, running your legacy PHP application.

To serve multiple requests concurrently, just run multiple PHP
unikernels.

A MySQL unikernel, providing the database for PHP.

Millions of lines of existing production code, running unmodified as
unikernels.

I have packaged Roundcube webmail as an example application which you
can use today.

(There's nothing special about Roundcube. I don't trust any PHP application, and as I
already run Rouncube, I've wanted it as a unikernel since I started working on Rumprun.)

17 / 24

http://roundcube.net/

RAMP: Roundcube webmail
Get up and running:

Build and rumpbake the nginx, php and mysql packages.
With the roundcube package:

Edit config/etc-hosts and run/*.sh to suit your network configuration
(see next slide).
Edit config/config.inc.php to set your IMAP and SMTP configuration.
Review config/nginx/nginx.conf and optionally provide
config/nginx/cert.{key,pem}.
Run make.

Run the built unikernels using the scripts in run/:

run/u-nginx-1.sh
run/u-php-1.sh
run/u-mysql-1.sh

18 / 24

RAMP: Roundcube webmail network
The Xen network configuration used by the example script in the roundcube
package:

nginx

php mysql loghost

Internet

IMAP
SMTP

xenif0

xenif1
xenbr1

loghost and IMAP/SMTP are provided by other (non-unikernel) Xen domUs.

This is "okay" except that, without complicated bridge firewalling, all domUs
on xenbr1 can talk to each other.

19 / 24

RAMP: Securing the network
Ideally, we want an arrangement where:

The nginx unikernel(s) can only connect to php unikernel(s).
The php unikernel(s) can only connect to the mysql unikernel.

There is no such thing as a "point to point link" in Xen networking:

Could be done with routed networking, but then all traffic goes via dom0,
and the firewalling is just as complicated.
Could be done with separate bridges (br-nginx-to-php, br-php-to-mysql),
but that rapidly gets hard to manage.

Xen provides the vchan mechanism for inter-domain communication via
shared memory, which is exactly what we need.

A major future goal for Rumprun is to develop support for using vchan with
existing unmodified applications. This will allow linking individual unikernels
together easily and securely.

20 / 24

http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/include/public/io/libxenvchan.h;hb=HEAD

Rumprun unikernels and security
Rumprun unikernels can be an alternative to containers, with much stronger
isolation guarantees.

A Rumprun unikernel does not contain a traditional OS, with a shell, and its
program data is generally read-only and static.

If there is no shell, there is very little an exploit can do to gain a permanent
foothold in the system. We can look at ways to make this even harder, e.g. ask
Xen to "drop our privileges" and force all future page mappings to be NX.

With vchan links between domUs, a PHP unikernel need not even include a
TCP stack.

The TCB of the Xen hypervisor is orders of magnitude smaller than that of
container technologies.

Minimalism is a virtue! Rumprun unikernels are about starting with nothing
and providing services with the minimal amount of code. Containers tend to
be developed the other way round.

21 / 24

Future directions and challenges
A PF_UNIX to vchan shim for Rumprun.

This will allow us to use a secure vchan channel for sysproxy.
And, combine different unikernel technologies:
Such as, replacing nginx with a type-safe MirageOS unikernel serving
frontend HTTP and TLS.

A better solution for host (and other domU) file store access.
NFS would probably just work, feel free to try. But, it's a pain to set
up.
The KVM folks are using 9P over virtio. We could do the same with
vchan.

Improve debgging, logging and monitoring support.
rumprun ec2 support for running on AWS out of the box.
Run more software and more language runtimes. This is a great way for
people to get involved with the project!

22 / 24

Conclusion and getting involved
Real-world, unmodified POSIX applications can be deployed as Rumprun
unikernels, today.
There is nothing special about the set of applications I have presented,
except that I needed them.
The project is a a level of maturity where people have started using
Rumprun successfully to deploy applications they are interested in.
You don't need to be a systems girl/guy to get involved!

Resources
Rump Kernels: http://rumpkernel.org/
The Rumprun unikernel stack: http://repo.rumpkernel.org/rumprun
Mailing list: rumpkernel-users@freelists.org
#rumpkernel on IRC (freenode)

23 / 24

http://repo.rumpkernel.org/rumprun
http://rumpkernel.org/

Questions?

Thank you for listening.
Martin Lucina, Xen Project Developer Summit, August 2015
@matolucina, http://lucina.net/, mato@rumpkernel.org

24 / 24

https://twitter.com/matolucina
http://lucina.net/

